Standing out in the field of IgY Immunotechnology

  • Home
    Home A full collection of all the Research Archive entries.
  • Years
    Years Sort entries by year.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Archives
    Archives Contains a list of research entries that were created previously.

Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis.*

Posted by on in 2015
  • Font size: Larger Smaller
  • Hits: 706
  • Print
  • Heimer BW1Tam BE1Sikes HD2. 2015. Protein Eng Des Sel. 28(12):543-51. doi: 10.1093/protein/gzv046. Epub 2015 Sep 18.
  • 1Department of Chemical Engineering, Massachusetts Institute of Technology, Building E19-502C, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
  • 2Department of Chemical Engineering, Massachusetts Institute of Technology, Building E19-502C, 77 Massachusetts Avenue, Cambridge, MA 02139, USA sikes@mit.edu.

Abstract

 We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application.

© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

KEYWORDS:

DNA methylation; directed evolution; epigenotyping; high affinity; methyl-binding domain protein

*The Chicken anti-CMYC used in this publication is a product of Gallus Immunotech Inc.

Buy it here:

{mijoshop id=116,button=0}

PMID:
 
26384511
 
[PubMed - in process] 
PMCID:
 
PMC4646160
 [Available on 2016-12-01]
Last modified on